

How is my child being assessed in these standards?

During the 2012-2013 school year, classroom teachers from across the district met monthly to identify what students should know, and be able to do, based on the Common Core State Standards for Mathematics (CCSSM). The district then selected Math Expressions to anchor the math program in grades K-5. The program provides a progression of teaching and learning that aligns with the CCSSM. Each unit contains assessments that measure student progress in relation to specific standards. Students will take assessments at the end of each unit, and teachers will review student data to ensure that students are meeting the CCSSM. Beginning in Grade 3, students will also complete a state assessment each year to determine how well they know the mathematics in the CCSSM at their grade level.

If you have more questions on the Common Core, please contact your

Thank you. We hope you found this information helpful in understanding how we are preparing your child for the future.

School District of Holmen-Instructional Services

Director of Instruction

child's teacher or the Instructional Services Department.

Wendy Savaske savwen@holmen.k12.wi.us

District Math Coordinator

Doug Burge <u>burdou@holmen.k12.wi.us</u>

Visit the Common Core State Standards website at

www.corestandards.org

There you can find:

- *The complete listing of the English Language Arts & Mathematics standards for each grade level.
- *Which 45 of the 50 states have adopted the CCSS
- *Resources

A Parent
Guide to
Understanding
Common Core
State
Standards
Report Card

Grade 2

Mathematics

How do I use this booklet to help me understand my child's report card?

You may have noticed that our report card looks very different this year. The new elementary report card is a standards based report card, which means the grading categories are directly related to the state standards. This booklet contains the new standards adopted by the state. In each major concept area you will find the bold category headings which were selected for the report card. Here is an example of what you will see on the report card and how to find those standards in this document.

The Report Card:

Operations & Algebraic Thinking				
	T1	T2	T3	T4
Represents & solves problems involving addition				
Represents and solves problems involving subtraction				
Add within 20				
Subtract within 20				
Works with equal groups of objects to gain foundations for multiplication				

This booklet:

Operations & Algebraic Thinking

Represent and solve problems involving addition.

* Use addition and subtraction within 100 to solve one— and two-step word...

For even more information and to view a more in depth parent guide with sample questions, please visit:

www.holmen.k12.wi.us
Select the District tab-Instructional Services-Report Cards

Mathematical Practice Standards

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Measurement & Data— Continued

Relate addition and subtraction to length.

- * Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.
- Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers 0, 1, 2, ..., and represent whole-number sums and differences within 100 on a number line diagram.

Work with time and money.

- * Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.
- * Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using \$ and ¢ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?

Represent and interpret data.

- * Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units.
- * Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put together, take-apart, and compare problems4 using information presented in a bar graph.

Geometry

Reason with shapes and their attributes.

- Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces.5 Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.
- * Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.
- Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half
- * of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.

When did Wisconsin adopt these standards?

In June, 2010, Wisconsin adopted the internationally benchmarked Common Core State Standards for Mathematics & English Language Arts. Wisconsin also adopted Standards for Literacy in All Subjects.

These standards provide the framework for a new assessment system beginning in 2014-15.

Operations & Algebraic Thinking

Represent and solve problems involving addition and subtraction.

* Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Add and subtract within 20.

* Fluently add and subtract within 20 using mental strategies.2 By end of Grade 2, know from memory all sums of two one-digit numbers.

Work with equal groups of objects to gain foundations for multiplication.

- Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2s; write an equation to express an even number as a sum of two equal addends.
- * Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.

Number and operations in Base Ten

Understand place value.

- Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases:
 - a. 100 can be thought of as a bundle of ten tens called a "hundred."
 - b. The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).
- * Count within 1000; skip-count by 5s, 10s, and 100s.
- * Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
- Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.

Number and operations in Base Ten—Continued

Use place value understanding and properties of operations to add and subtract.

- * Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.
- * Add up to four two-digit numbers using strategies based on place value and properties of operations.
- * Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.
- * Mentally add 10 or 100 to a given number 100–900, and mentally subtract 10 or 100 from a given number 100–900.
- * Explain why addition and subtraction strategies work, using place value and the properties of operations.

Measurement & Data

Measure and estimate lengths in standard units.

- * Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.
- * Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.
- Estimate lengths using units of inches, feet, centimeters, and meters.
- * Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.